Optical filters with narrow transmission band above the bandgap of thermophotovoltaic (TPV) cells are not restrained by the rigorous thermal reliability as needed for the emitters. In this work, a novel metasurface filter made of an aluminum nanopillar (AlNP) array on a quartz substrate is proposed to achieve spectrally selective transmission above the bandgap of the TPV cell. Optical simulations using Finite-difference time-domain were carefully performed to determine the appropriate AlNP period, diameter, and height such that the resulting nanopillar array will show narrowband transmission at a wavelength of 1.9 μm, which is close to the bandgap of a commercial gallium antimonide (GaSb) TPV cell. The narrow-band transmission enhancement can be attributed to the magnetic polariton (MP) resonance between neighboring Al nanopillars. The MP mechanism is further confirmed by an inductor-capacitor circuit model and the effects of the nanopillars period, diameter, height, as well as incidence angles were discussed. Moreover, open-circuit voltage, short-circuit current density, output electric power, and conversion efficiency were evaluated for the GaSb TPV cell coupled with the AlNP metasurface filter structure with enhanced TPV performance.