Received: 09 Aug 2020
Accepted: 27 Aug 2020
Published online: 31 Aug 2020
Daoyuan Wang,a and Zhanhu Guob
a Department of Chemistry and Physics, University of Arkansas, Pine Bluff, Arkansas 71601, USA.
b Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA.
* E-mail: wangd@uapb.edu (D. Wang), zguo10@utk.edu (Z. Guo).
Keywords: Li-ion batteries; Cathode material; Microwave sintering; Lattice parameters; Electrochemical performance.
More than half century, crystalline silicon solar cells struggle to reach over 20% power conversion efficiencies (PCEs). Still, the complex procedures in industry escalate its payback time. Copper indium gallium selenide (CIGS) and cadmium telluride (CdTe), shows more than 19 % PCE for 1 cm2 cells, and they used to be a promising second-generation thin-film solar cells.[1] However, they are facing difficulties in rare elements and large-scale production.[2]
When it was first reported in 2009 with less than 4% PCE,[3] scientists would never think perovskite type CH3NH3PbX3 solid solar cells can reach PCE over 25%,[4] in barely 10 years. The astounding progresses achieved in the past 10 years suggests that it is a better candidate for the next generation solar cells.[5-11]

Fig. 1 a: crystal structure of a typical halide perovskite; b: solar cell structure diagram; c: SEM cross-section image.

Fig. 2 a: different light emitting color from halide perovskite materials; b: electrochromism discovered on halide perovskite material; c: ion battery charge and discharge curves based on halide perovskite material.
Halide perovskites material is a typical ABX3 crystal. A is organic cation, such as CH3NH3+ (MA), CH(NH2)2+ (FA), C6H5(CH2)2NH3+ (PEA); or, A can be inorganic cation, such as Cs+. B is metal, such as Pb2+ or Sn2+. X is halide or pseudohalide, such as I- , Br-, Cl- and SCN-.[12-14] Halide perovskite materials show excellent performance in carrier generation, charge diffusion and light absorption. Plus, wet chemistry is the main method, which can make halide perovskite solar cells cheap and easy to produce. Fig. 1 shows the crystal structure of a typical halide perovskite CH3NH3PbI3 and the cross-section structure of halide perovskite solar cell.
The fever for of halide perovskite materials in solar cell is not over yet, the halide perovskite materials started to attract scientists’ attention in other areas already.
Few years after the application in solar cells, various of other interesting applications of halide perovskite materials have been discovered in light emitting,[15-18] sensor/detector,[ ADDIN EN.CITE.DATA 19-21] field effect transistor,[22,23] and others.[24] Energy storage become more and more important is our daily life, such as supercapacitors and lithium ion batteries.[25-27] As researches carrying on, especially doping and intercalation, a new world for halide perovskite materials emerges. Figure 2 shows some results of different colors light emitting, ion battery and electrochromism based on halide perovskite materials.[28] Of course, here is just part of the story.
Modern technologies have widened the vision of human wider than any time in the history: nanomaterials have never get so close to us before, from computer chips to targeting medications;[29,30] with the advanced instrumentations to visualize the nano-world,[31] we have seen the most amazing and beautiful science ever. What else surprises halide perovskite materials can give us in the next 10 years?
References
[1] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, Prog. Photovoltaics, 2013, 21, 827, doi: 10.1002/pip.2404.
[2] V. Fthenakis, Renew. Sust. Energ. Rev. 2009, 13, 2746, doi: 10.1016/j.rser.2009.05.001.
[3] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc., 2009, 131, 6050-6051, doi: 10.1021/ja809598r.
[4] Best Research-Cell Efficiency Chart, https://www.nrel.gov/pv/cell-efficiency.html, accessed April 18th,2019.
[5] Q. Jiang, L.Wang, C. Yan, C. Liu, Z. Guo, N. Wang, Eng. Sci., 2018, 1, 64-68, doi: 10.30919/es.180329.
[6] Y. Guo, T. Liu, N. Wang. Q. Luo, H. Lin, J. Li, Q. Jiang, L. Wu, Z. Guo, Nano Energy, 2017, 38, 193-200, doi: 10.1016/j.nanoen.2017.05.026.
[7] Q. Jiang, X. Sheng, B. Shi, X. Feng, T. Xu, J. Phys. Chem. C, 2014, 118, 25878-25883, doi: 10.1021/jp506991x.
[8] J. You, Z. Hong, Y. Yang, Q. Chen, M. Cai, T. Song, C. Chen, S. Lu, Y. Liu, H. Zhou, Y. Yang, ACS Nano, 2014, 8, 2, 1674–1680, doi: 10.1021/nn406020d.
[9] Q. Jiang, T. Xu, Comment. Inorg. Chem. 2016, 36, 200-214, doi: 10.1080/02603594.2015.1116985.
[10] N. Pellet, P. Gao, G. Gregori, T. Yang, M. Nazeeruddin, J. Maier, M. Grätzel, Angew. Chem. Int. Ed., 2014, 53, 3151-3157, doi: 10.1002/anie.201309361.
[11] Q. Jiang, X. Sheng, Y. Li, X. Feng, T. Xu, Chem. Commun., 50, 14720-14723 (2014), doi: 10.1039/C4CC07367C.
[12] Y. Wang, T. Wu, J. Barbaud, W. Kong, D. Cui, H. Chen, X. Yang, L. Han, Science, 2019, 365, 687-691, doi: 10.1126/science.aax8018.
[13] Q. Jiang, D. Rebollar, J. Gong, E. L. Piacentino, C. Zheng, T. Xu, Angew. Chem. Int. Ed.,2015, 54, 7617-7620, doi: 10.1002/anie.201503038.
[14] J. Jiang, J. Xu, H. Walter, A. Kazi, D. Wang, G. Wangila, M. Mortazavi, C. Yan, Q. Jiang, ES Mater. Manufact., 2020, 7, 25-33, doi: 10.30919/esmm5f705.
[15] J. Li, X. Shan, S.G.R. Bade, T. Geske, Q. Jiang, X. Yang, Z. Yu, J. Phys. Chem. Lett., 2016, 7, 20, 4059–4066, doi: 10.1021/acs.jpclett.6b01942.
[16] Q. Jiang, X. Zeng, N. Wang, Z. Xiao, Z. Guo, J. Lu, ACS Energy Lett., 2018, 3, 1, 264–269, doi: 10.1021/acsenergylett.7b0123.
[17] L. Tang, J. Qiu, Q. Wei, H. Gu, B. Du, H. Du, W. Hui, Y. Xia, Y. Chen, W. Huang, ACS Appl. Mater. Interfaces, 2019, 11, 29132–29138, doi: 10.1021/acsami.9b11866.
[18] J. Jiang, D. Wang, M. Wu, P. Peng, F. Li, F. Liu, R. Jing, X. Ma, Y. Chao, Z. Xiao, Q. Jiang, APL Mater., 2020, 8, 071115, doi: 10.1063/5.0009852
[19] L. Su, Z. X. Zhao, H. Y. Li, J. Yuan, Z. L. Wang, G. Z. Cao, G. Zhu, ACS Nano, 2015, 9, 11310-11316, doi: 10.1021/acsnano.5b04995.
[20] P. Ramasamy, D. H. Lim, B. Kim, S. H. Lee, M. S. Lee and J. S. Lee, Chem. Commun., 2016, 52, 2067-2070, doi: 10.1039/C5CC08643D.
[21] Y. Zhuang, W. Yuan, L. Qian, S. Chen, G. Shi, Phys Chem Chem. Phys., 2017, 19, 12876-12881, doi: 10.1039/C7CP01646H.
[22] S. P. Senanayak, B. Yang, T. H. Thomas, N. Giesbrecht, W. Huang, E. Gann, B. Nair, K. Goedel, S. Guha, X. Moya, C. R. McNeill, P. Docampo, A. Sadhanala, R. H. Friend, H. Sirringhaus, Science 2017, 3, e1601935., doi: 10.1126/sciadv.1601935.
[23] T. Matsushima, F. Mathevet, B. Heinrich, S. Terakawa, T. Fujihara, C. Qin, A. S. D. Sandanayaka, J.-C. Ribierre, C. Adachi, Appl. Phys. Lett., 2016, 109, 253301, doi: 10.1063/1.5097433.
[24] F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D.-D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, R. H. Friend, J. Phys. Chem. Lett., 2014, 5, 1421-1426, doi: https://doi.org/10.1021/jz5005285.
[25] Y. Liu, J. Jiang, Y. Yuan, Q. Jiang, Chao Yan, Nanomaterials, 2019, 9, 1336, doi: 10.3390/nano9091336.
[26] Z. Peng, Y. Hu, J. Wang, S. Liu, C. Li, Q. Jiang, J. Lu, X. Zeng, P. Peng, F. Li, Adv. Energy Mater., 2019, 9, 1802928, doi: 10.1002/aenm.201802928.
[27] F. Liu, G. Li, S. Luo, W. Li, Z. Huang, W. Li, F. Su, C. Li, Z. Ding, Q. Jiang, ACS Appl. Mater. Interfaces, 2019, 11, 691-698, doi: 10.1021/acsami.8b16463.
[28] Q. Jiang, M. Chen, J. Li, M. Wang, X. Zeng, T. Besara, J. Lu, Y. Xin, X. Shan, B. Pan, C. Wang, S. Lin, T. Siegrist, Q. Xiao, Z. Yu, ACS Nano, 2017, 11, 1073-1079, doi: 10.1021/acsnano.6b08004.
[29] C. Liu, Q. Fang, D. Wang, C. Yan, F. Liu, N. Wang, Z. Guo, Q. Jiang, ES Mater. Manufact., 2019, 3, 2-15, doi: 10.30919/esmm5f199.
[30] Q. Jiang, F. Liu, T. Li, T. Xu, J. Mater. Chem. C, 2014, 2, 618-621, doi: 10.1039/C3TC31692K.
[31] Y. Guo, Q. Jiang, B. Peng, X. Zan, Eng. Sci., 2020, 9, 17-24, doi: 10.30919/es8d912.
Publisher’s Note
Engineered Science Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.